Recent publications
- Y. Zhu, P. Yan, R. Wang, J. Lai, H. Tang, X. Xiao, R. Yu…Y. Chen, K. Wang. (2023). Opioid-induced fragile-like regulatory T cells contribute to withdrawal, Cell, 186
- Lin, Y., Wu, S., Xiao, X., Zhao, J., Wang, M., Li, H., ... & Yu, R. (2022). Protocol to estimate cell type proportions from bulk RNA-seq using DAISM-DNNXMBD. STAR protocols, 3(3), 101587.
- X. Xiao, Q. Guo, C. Cui, Y. Lin, L. Zhang, X. Ding, Q. Li, M. Wang, W. Yang, Y. Kong & R. Yu (2022), Multiplexed imaging mass cytometry reveals distinct tumor-immune microenvironments linked to immunotherapy responses in melanoma. Communications medicine, 2, 131.
- Liu, Y., Lin, Y., Yang, W., Lin, Y., Wu, Y., Zhang, Z., ... & Yu, R. Application of individualized differential expression analysis in human cancer proteome. Briefings in Bioinformatics.
- Lin, Y., Li, H., Xiao, X., Zhang, L., Wang, K., Zhao, J., ... & Yu, R. (2022). DAISM-DNNXMBD: Highly accurate cell type proportion estimation with in silico data augmentation and deep neural networks. Patterns, 100440.
- Wang, L., Zhou, L., Yang, W., & Yu, R. (2022). Deepfakes: a new threat to image fabrication in scientific publications?. Patterns, 3 (5), 100509.
- Liu, Y., Gao, M., Tan, L., Liu, H., Lin, Y., Yang, W., & Yu, R. (2021, December). scSpark XMBD: High-Performance scRNA-seq Data Processing with Spark. In 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 1956-1962). IEEE.
- Gao, M., Yang, W., Li, C., Chang, Y., Liu, Y., He, Q., Zhong, C.Q., Shuai, J., Yu, R*. and Han, J.*, 2021. Deep representation features from DreamDIAXMBD improve the analysis of data-independent acquisition proteomics. Communications biology, 4(1), pp.1-10.
- Xiao, X., Xu, C., Yang, W. and Yu, R., 2021. Inconsistent prediction capability of ImmuneCells. Sig across different RNA-seq datasets. Nature communications, 12(1), pp.1-3.
- Huang, L., Hong, B., Yang, W., Wang, L. and Yu, R., 2021. Snipe: highly sensitive pathogen detection from metagenomic sequencing data. Briefings in Bioinformatics, 22(5), p.bbab064.
- Li, C., Gao, M., Yang, W., Zhong, C. and Yu, R., 2021. Diamond: a multi-modal DIA mass spectrometry data processing pipeline. Bioinformatics, 37(2), pp.265-267.
- J. Guo, Y. Zhou, C. Xu, Q. Chen, Z. Sztupinszki, J. Börcsök, C. Xu, F. Ye, W. Tang, J. Kang, L. Yang, J. Zhong, T. Zhong, T. Hu, R. Yu, Z. Szallasi, X. Deng, Q. Li, 2021. Genetic Determinants of Somatic Selection of Mutational Processes in 3,566 Human Cancers. Cancer Research, 81(16), pp.4205-4217.
- X. Xiao, Y. Qiao, Y. Jiao, N. Fu, W. Yang, L. Wang, R. Yu*, J. Han*,2021. Dice-XMBD: Deep learning-based cell segmentation for imaging mass cytometry, Frontiers in Genetics, (12)
- Hou, W., Wang, L., Cai, S., Lin, Z., Yu, R. and Qin, J., 2021. Early neoplasia identification in Barrett’s esophagus via attentive hierarchical aggregation and self-distillation. Medical image analysis, 72, p.102092.
- Z. Wang, X. Fan*, J. Qi, C. Wang, R. Yu, C. Wen, 2021. Federated Learning with Fair Averaging, 30th International Joint Conference on Artificial Intelligence (IJCAI-21), Main Track
- Yu, R., Yang, W. and Wang, S., 2020. Performance evaluation of lossy quality compression algorithms for RNA-seq data. BMC bioinformatics, 21(1), pp.1-15.
- Yu, R. and Yang, W., 2020. ScaleQC: a scalable lossy to lossless solution for NGS data compression. Bioinformatics, 36(17), pp.4551-4559.